USER GUIDE FOR GENUINE KWIKSTAGE
contents

Section 1
Kwikstage components

Section 2
Erection and dismantling of a basic Kwikstage scaffold

Section 3
Safe use and maintenance

Section 4
Loading data and tie patterns

Section 5
Bracing requirements

Section 6
Platform brackets

Section 7
Ladder and stair access

Section 8
Loading tower

Section 9
Kwikstage safe anchorage points

Appendix A - Identification and use of alternative components

This guide is valid only for the use of Genuine Kwikstage manufactured, repaired and maintained where appropriate by Interserve Industrial or RMD Kwikform.

First Issue 2010
user guide

The Designation of a Genuine Kwikstage Scaffold in accordance with BS EN 12810-1:2003 is: Scaffold EN 12810-4N-SW12/244-H1-B-LS

The “Kwikstage for access” User Guide has been designed to provide guidance on how to safely erect, use and dismantle basic Independent Access Scaffolds formed from Kwikstage.

Requirements contained in current CEN and BS Standards have been implemented together with those it is anticipated will be contained in Standards currently under preparation.

As part of the ongoing development of Kwikstage, and to facilitate compliance with changes in legislation, a number of new components have been introduced, some components have been discontinued and the design and/or use of others modified.

This User Guide is designed for safe use of Kwikstage components as currently manufactured. Where the design or use of a component has changed significantly, information on the component concerned is given in Appendix A.

Guidance is provided for scaffolds of both nominal 1.2m (5 board) and 0.8m (3 board) widths.

For information on Kwikstage components and applications not shown in this User Guide, please consult your local Branch.

DISCLAIMER:
Information given in this User Guide relates solely to equipment manufactured and supplied by RMD Kwikform and Interserve Industrial. A number of Kwikstage imitations are available, the quality of which is unknown. Where scaffold structures are erected wholly, or in part, from such copy equipment, instructions for its use should be obtained from the manufacturer of the copy equipment.

NOTE:
Only trained, competent operatives should erect, dismantle or adapt Kwikstage scaffolds at all times.

Safe systems of work for the erection, dismantling or adaptation of Kwikstage scaffolds should reflect current legislative and industry best practice methodology.

We recommend that as a minimum the guidelines for working practices for scaffolders working at heights contained in document SG4, produced by the National Access and Scaffolding Confederation (NASC) are applied to activities taking into consideration the requirements for advanced guardrails.
Always Ensure all on-site users know for what purpose the scaffold is intended and the loads it is designed to take.

Always Prepare the ground for the scaffold and the loads it will impose.

Always Ensure that you provide agreed storage areas for scaffolding on site to reduce handling and prevent tripping hazards.

Always Keep access routes clear.

Always Inspect the scaffold each time before use.

Always Inspect your scaffolds and issue reports. It is required by law.

Always Give consideration to the use of a tagging system.

Always Prevent access to incomplete and/or unsafe scaffolds and ensure that you have “scaffold not to be used” signs in place.

Always Tell the scaffolding contractor if the scaffold gets damaged, repairs can then be arranged.

Always Protect scaffold from damage by site plant.

Always Ensure loads on the platform are evenly distributed.

Always Consider the weight of the materials you are loading on the scaffold and instruct operatives on maximum loading.

Always Instruct forklift driver on maximum loading.

Always Use properly designed loading towers.

Always Instruct the operatives who will be using the scaffold not to make any adaptations.

Always Report scaffold defects to scaffolding contractor - you may be saving a life.

ALWAYS LOOK AFTER YOUR SCAFFOLDING. BE SAFE.
guide to safe scaffolding 2

Never *Remove Ties.
Never *Remove guardrails, toeboards, or brickguards.
Never Remove components or adapt scaffolding.
Never Create gaps in platform by removing scaffold boards from platform.
Never Work on or use scaffolds which are being erected or dismantled.
Never Remove ladders.
Never Overload the scaffold.
Never Undermine the scaffold by digging trenches or foundations under or adjacent to it.
Never Add sheeting or netting to scaffold without the approval of the scaffold designer.
Never Forklift loads directly onto access scaffold (instead, use a loading tower).
Never Allow site plant to run over scaffold materials, damaged scaffold boards cause accidents.
Never Allow site plant to run into scaffold, bent tubes could lead to collapse of the structure.

*Except when using trained competent operatives, working to your agreed site requirements and instructions.

NEVER TAKE RISKS – THE ODDS ARE AGAINST YOU

First Issue 2010
section 1 components

The following list details basic Kwikstage components. Additional components to cater for specific applications are available from your local RMD Kwikform or Interserve Industrial branch. All component dimensions are nominal. Weights of components relate to those currently in production and may differ from earlier designs.

Universal Jack

Designed for levelling a scaffold where ground or foundation levels vary. Adjustment is by means of a collar on a threaded stem.

Universal Jack

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX20005</td>
<td>KAX20005</td>
<td>6.5kg</td>
<td>140mm</td>
<td>595mm</td>
</tr>
</tbody>
</table>

Ledger/Guardrails

These components have a wedge fixing device at each end. These fit into the upper ‘V’ pressings on the Standards to locate them at the required longitudinal spacing. They are used in pairs as Ledgers at each ‘lift’, and to form Guardrails at platform level.

1.8m Ledger/Guardrail

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Code No.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX41829</td>
<td>9028</td>
<td>7.5kg</td>
</tr>
</tbody>
</table>

2.4m Ledger/Guardrail

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Code No.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX42438</td>
<td>9014</td>
<td>9.3kg</td>
</tr>
</tbody>
</table>

Standards

These components form the vertical supports and are made from standard scaffold tube. They have ‘V’ pressings in clusters at 495mm intervals that provide connection points for Ledgers, Transoms etc. The Standards also have spigots at the head. (Standards manufactured prior to 1994 have a spigot and wedge connection.)

3m Standard

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX32000</td>
<td>12.0kg</td>
</tr>
</tbody>
</table>

5m Standard

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX33000</td>
<td>17.0kg</td>
</tr>
</tbody>
</table>

Transoms

These components are in the form of an inverted T-section with wedge fixing devices at each end. These fit into the lower ‘V’ pressing on the Standards to locate them at the required lateral spacing. Flanges on the T-section provide a seating for decking components.

0.8 Transom

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Standard spacing</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX50812</td>
<td>0.81m</td>
<td>4.7kg</td>
</tr>
</tbody>
</table>

1.2 Transom

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Standard spacing</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX51270</td>
<td>1.27m</td>
<td>6.9kg</td>
</tr>
</tbody>
</table>
Return Transoms

These components are similar to normal Transoms except that they have a pressed steel section that hooks over a Ledger to form a 90° return in a scaffold.

0.8 Return Transom
- **Code No.** KAX50008
- **Code No.** 7807
- **Standard spacing** 0.81m
- **Weight** 8.5kg

1.2 Return Transom
- **Code No.** KAX50007
- **Code No.** 9017
- **Standard spacing** 1.27m
- **Weight** 13.1kg

Tie Bars

Tie Bars are formed from steel angle, with curved lugs at each end which engage in holes in 2 and 3 Board Platform Brackets. Tie Bars must always be used to prevent the spreading of 2 and 3 Board Platform Brackets.

1.2m Tie Bar
- **Code No.** KAX10027
- **Code No.** 9033
- **Standard spacing** 1.27m
- **Weight** 3.8kg

1.8m Tie Bar
- **Code No.** KAX10028
- **Code No.** 9027
- **Standard spacing** 1.83m
- **Weight** 5.4kg

2.4m Tie Bar
- **Code No.** KAX10029
- **Code No.** 9020
- **Standard spacing** 2.44m
- **Weight** 7.2kg

Platform Brackets

Platform Brackets are used to provide a cantilevered platform on the inner side of a scaffold. They are formed from an inverted T-section with a wedge fixing device at one end which fits into a ‘V’ pressing on a Standard. Tie Bars must always be used with 2 and 3 Board Platform Brackets.

1 Board Bracket
- **Code No.** KAX10003
- **Code No.** 9041
- **Width of Platform** 230mm
- **Weight** 2.3kg

2 Board Bracket
- **Code No.** KAX10004
- **Code No.** 9019
- **Width of Platform** 460mm
- **Weight** 4.9kg

3 Board Bracket
- **Code No.** KAX10005
- **Code No.** 9022
- **Width of Platform** 690mm
- **Weight** 6.5kg

Diagonal Braces

These components are formed from tube, with pivoting wedge devices at each end. These fit into the outside ‘V’ pressings on the Standards.

2.76m Diagonal Brace
- **Code No.** KAX62744
- **Code No.** 9051
- **Weight** 11.0kg
- For use in 1.8m Bays

3.54m Diagonal Brace
- **Code No.** KAX63658
- **Code No.** 9026
- **Weight** 13.9kg
- For use in 2.4m Bays

Steelstage

Steelstage is a galvanised pressed steel batten with a slip resistant surface. These battens are 230mm wide and 64mm deep and are the preferred type for forming the working platforms on Kwikstage scaffolds.

1.2m Steel Stage
- **Code No.** SGX11219
- **Code No.** 9515
- **Standard spacing** 1.27m
- **Weight** 8.5kg

1.8m Steel Stage
- **Code No.** SGX11829
- **Code No.** 9513
- **Standard spacing** 1.8m
- **Weight** 12.3kg

2.4m Steel Stage
- **Code No.** SGX12438
- **Code No.** 9514
- **Standard spacing** 2.44m
- **Weight** 16.1kg

First Issue 2010
1 components

Toeboard Bracket
This component clamps on to a Standard by means of a captive wedge. It holds either one or two Steelstage toeboards in position.

Toeboard Bracket
Code No. KAX10009
Code No. 9029
Weight 0.8kg

End Toeboard Bracket
These components fit into ‘V’ pressings on Standards at the end of a platform and hold the end Steelstage toeboard in position.

End Toeboard Bracket
Code No. KAX10002
Code No. 9099
Weight 1.3kg

Kwikguards
These galvanised steel components are combined Guardrail, Toeboard and Brickguard units and fit into the ‘V’ pressings on the Standards.

1.2m Kwikguard
Code No. KAX10018
Code No. 9068
Weight 15.0kg

2.4m Kwikguard
Code No. KAX10020
Code No. 9066
Weight 25.0kg

1.8m Kwikguard
Code No. KAX10019
Code No. 9067
Weight 20.0kg

Ladder Access Transom
This component is used in a ladder access tower to form an opening in the platform.

Ladder Access Transom
Code No. KAX50004
Code No. 9055
Weight 10.0kg

Stairway Unit
The Stairway Unit is made from aluminium and fits into a 2.4m x 2.0m Kwikstage scaffold. It is connected to the Transoms by means of a bolted clip (Item No. 7400). The overall width of the unit is 576mm, enabling two to be fixed in a standard 1.27m wide bay.

Stairway Unit
Code No. KAX10023
Code No. 9042
Weight 31.9kg

Handrail Unit
This aluminium component fits into sockets in the Stairway Unit to provide a double guardrail.

Handrail Unit
Code No. KAX10016
Code No. 9043
Weight 10.0kg

Internal Corner Filler
Kwikstage internal corner filler has been designed for use with two and three board stage brackets at internal corners of buildings.

Internal Corner Filler
Code No. KAX10017
Code No. 9053
Weight 8.9kg
Loading Tower Transom
This Transom is designed to connect to the front pair of Standards in a loading tower by means of wedge fixing devices. These fit into two pairs of upper ‘V’ pressings on the Standards. The top chord of the Transom is in the form of an inverted T-section, the flanges of which form a seating for the Steelstage decking.

Infill Transom
These galvanised components are used at the rear of a loading tower to support the Steelstage decking and to fill the gap between it and the main scaffold platform. They connect, by means of a wedge fixing device, to the Standards in a 2.4m scaffold bay and to an additional standard at the centre of the bay.

Infill Tie
This galvanised tie is formed from steel box section. It connects around the Standard at the centre of the rear of the tower and over the Loading Tower Transom.

Guardrail/Gate Restraint
This component is formed from galvanised steel tube and is fixed to the Kwikguard on each side of a loading tower by means of a half-coupler hinge. In the ‘open’ position it forms a barrier between the main scaffold platform and the tower deck. In the ‘closed’ position it forms a guardrail at the front of the tower and an attachment point for the gate latch.

Loading Tower Gates
This gate operates on a fulcrum mechanism attached to the side barrier and simply opens with an operating tube connected between the arms. The gate fails safely to a closed position if the operator releases hold of the operating tube.

Loading Tower Intermediate Standard Restraint
This component provides lateral restraint to the intermediate Standard at the rear of a loading tower.
1 components

Additional Kwikstage Components

The following two pages provide details of additional components which can be used with Kwikstage scaffolds.

A description of the use and operation of each item is provided together with a Safe Working Load where applicable.

Drilled Transoms

Similar to normal Transoms except that holes have been drilled in the flange to accept a Tie Bar.

Safe Working Load

Maximum load on a Steelstage platform supported by a Drilled Transom is the same as a normal Transom.

- **0.8 Drilled Transom**
 - Code No. KAX50002
 - Code No. 9537
 - Weight: 4.6kg

- **1.2 Drilled Transom**
 - Code No. KAX50001
 - Code No. 9037
 - Weight: 6.8kg

Sliding Stage Brackets

Used to create an access within recesses and rebates where full bay lengths cannot be accommodated. Must be used in conjunction with 2 & 3 Board Platform Brackets. Always seek engineering advice prior to use.

Safe Working Load

Maximum load on a Steelstage platform supported by a Sliding Stage Bracket is 1.5kN/m2.

- **2 Board**
 - Code No. KAX10006
 - Code No. 7806
 - Weight: 7.75kg

- **3 Board**
 - Code No. KAX10007
 - Code No. 7808
 - Weight: 9.5kg

3 Board Access Bracket

Used to create an access on the outside of the scaffold, especially where overhanging eves prevent access along the main scaffold. Always seek engineering advice prior to use.

Safe Working Load

Engineering advice is required at all times. Maximum load on a Steelstage platform supported by a 3 Board Access Bracket is 0.75kN/m2.

- Code No. KAX10001
 - Code No. 9054
 - Weight: 16.8kg

0.8m Tie Bar

Tie Bars are formed from steel angle with curved lugs at each end which engage in holes in Platform Brackets and Drilled Transoms.

Safe Working Load

Note:

A 0.8m Steelstage (Item No. SPU10011 or Code No. 9536) may be used with the Tie Bar to form very short cantilever platforms and bays (using the 0.8m Transom - Item No. KAX50812 or Code No. 9529).

- **0.8m Tie Bar**
 - Code No. KAX10026
 - Code No. 9069
 - Weight: 2.3kg
Coupler Brace
Coupler Brace is used in all Kwikstage bays that are cantilevered above the last tie.

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX10013</td>
<td>9.0kg</td>
</tr>
<tr>
<td>9402</td>
<td></td>
</tr>
</tbody>
</table>

8ft Infill Transom, Side Loading Tower
The Infill Transom is installed between the platform of the access scaffold and the side access loading tower platform.

Safe Working Load
The Infill Transom will support a similar load to the loading tower platform.

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAX40001</td>
<td>28.5kg</td>
</tr>
<tr>
<td>9044</td>
<td></td>
</tr>
</tbody>
</table>

16ft (4.877m)
Bridging Ledger
Provides a 4.877m opening through the main run of Kwikstage scaffold (a bridge). All other working platforms above the bridge must be produced by similar pairs of Bridging Ledgers.

Safe Working Load
You should seek engineering advice prior to arranging any layout because the Bridging Ledger can quickly become overloaded.

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPX10003</td>
<td>4.3kg</td>
</tr>
<tr>
<td>9039</td>
<td></td>
</tr>
</tbody>
</table>

Guardrail Post
A Guardrail Post is required to be fitted at midspan of the Bridging Ledger. No other Kwikstage component should be fitted at midspan.
section 2

guide for the erection and dismantling of a basic kwikstage scaffold

Kwikstage erected in the following manner and to the lift heights and maximum heights stated in Section 4 will have a maximum load capability of the Standard of 24.9kN

Only trained, competent operatives should erect, dismantle or adapt Kwikstage scaffolds at all times. Safe systems of work for the erection, dismantling or adaptation of Kwikstage scaffolds should reflect current legislative and industry best practice methodology.

We recommend that as a minimum the principles for working practices for scaffolders working at heights contained in document SG4, produced by the National Access and Scaffolding Confederation (NASC) are applied to all scaffolding activities. Advanced guardrails should be installed in the approved methods chosen by the erector.

Part 1 - Straight run scaffolds

Scaffolds around square or rectangular buildings

1 Establish the setting out of the scaffold, the foundation levels, and the levels at which working platforms are required. Plan to erect the scaffold in a continuous sequence, starting from a convenient point such as the highest ground level corner of the building to be scaffolded.

2 Ensure that there is an adequate foundation for the scaffold, and provide sole plates of suitable size and strength to spread the load from the Standards on to the foundation.

3 Fit base Jacks into the bottom of two Standards. Adjust the Jacks to suit the approximate level of the first working platform required.

4 With one person holding two Standards vertically, another fits a Transom of the required length into the bottom set of ‘V’ pressings. The wedges should not be driven home at this stage.

NB The Standards must be orientated so that the Transom fits into a lower ‘V’ pressing of the bottom cluster.

(For old type Standards with wedge fittings at the head, the outer Standards must have the wedges facing the outside so that they do not obstruct the toeboard.)
5 With the Standards held upright, the second person fits two Ledgers of the appropriate length into the lowest set of ‘V’ pressings. The Standards can now lean over, so that they are supported by the free ends of the Ledgers.

6 Standards equipped with base Jacks are then fitted to the free ends of the Ledgers and a Transom is fixed between the Standards.

7 Fix two further Transoms at the required lift height (a maximum of four ‘V’ pressing clusters above the bottom Transoms). Two Ledgers are then fixed at the same level to form a tower.

8 Ensure that this tower is at the required distance from the building face and is square in plan. (Squareness can be checked by placing a Steelstage on the bottom Transoms.) Adjust the Jacks so that the bottom Transoms and Ledgers are all level. Drive home all wedges with a single sharp blow from the Kwikstage Universal Tool or similar.

NB Once this operation is completed for all base lifts, no further levelling of the scaffold is required.

9 If starting from an external corner of a building, position a Standard, equipped with its Jack, alongside the inner pair of Ledgers in the already erected tower. This will form the inside Standard on the scaffold return.

10 Make sure that this Standard is at the correct distance from the building face, then adjust the Jack so that the higher ‘V’ pressings on the Standard just touch the underside of the Ledgers in the tower.

11 With one person holding this Standard in position, the second operator hooks a Return Transom of the required length over the bottom Ledger in the tower, and connects it to the bottom ‘V’ pressing in the Standard.
2 erection & dismantling

12 A second Standard (with Jack) is then connected to this Return Transom to form the outside Standard on the scaffold return. Another Return Transom is then fixed at the level of the upper Ledger in the tower.

13 Further Ledgers, Standards and Transoms can then be fixed in the same manner as for the first tower and all the wedges driven home.

14 Successive bays of the appropriate size can then be erected in the same manner, remembering, where possible, to work continuously in one direction.

15 To erect a second lift, first place an appropriate number of battens or Steelstage in position, sitting on the horizontal part of each pair of upper Transoms. This will form part of the safe platform from which to work.

16 Using a ladder to gain access to this platform, add Standards, Ledgers, Transoms and Return Transoms in the same manner as previously described, but without the need for levelling.

17 Fix a Diagonal Brace on the outside of the outer Standards in the bottom lift of each of the bays specified in Section 5. This is a two person operation requiring the wedge fixing devices at each end of the Brace to be positioned simultaneously over the ‘V’ pressing at the bottom of one Standard, and on the appropriate ‘V’ pressing on the adjacent Standard. Once in position, the wedges on the Brace can be driven home.

18 Continue erecting the scaffold, fixing components in the sequence and manner described above. Always work from a safe platform and progressively fix ties to the building, as detailed in Section 4.

19 When the level of the working platform is reached, deck out a bay with Steelstage of the appropriate length to suit the bay size. (800mm wide scaffolds need three Steelstage per bay and 1.2m wide scaffolds need five Steelstage.)
20 Fix Kwikguard to provide edge protection from falls of men and materials. This component has wedge devices which connect to the second ‘V’ pressing above the platform, and pins which engage into the first ‘V’ pressings. **This is normally a two person operation.**

21 If Kwikguard is not available, edge protection can be provided as follows:

a) Fix Ledgers to form guardrails in the first and second ‘V’ pressings above platform level, on the outside Standards.

![Diagram](image1)

b) Fix a Steelstage to the inside of the outer Standards to form a toeboard. The Toeboard is fixed by means of Toeboard Brackets which have wedge connecting devices that fit around the Standards.

![Diagram](image2)

c) At the ends of scaffold runs use Transoms to form the guardrails. Fix 1.2m Steelstage toeboards to the outside of the Standards by means of End Toeboard Brackets.

![Diagram](image3)
Part 2 - Infill or non-standard bays

1 Whatever the plan dimensions of a building, it is normally possible, with careful planning, to erect a Kwikstage scaffold around the perimeter of a building without non-standard bays. If they are required, any infill gaps should occur away from the corner (i.e. in a straight run) and be kept within 600mm.

2 Leave any infill areas until all the standard Kwikstage bays have been erected.

3 Connect the Kwikstage Standards on each side of the infill area together, at each Ledger position, by means of short lengths of scaffold tube and right angle couplers.

Note: Infill guard rails may be formed of tube connected to the Standards by means of suitable couplers of adequate load bearing capacity.

4 Decking and toeboards to fill the gap can be formed from timber of adequate quality for the platform loading and of a depth that does not create a trip hazard.

Part 3 - Internal corners

1 When providing a Kwikstage scaffold for buildings which have internal corners, it is preferable to start erection from those internal corners. The layout of the scaffold should be planned accordingly.

2 The two most common ways of accommodating internal corners are:

a) By using a mirrored version of the method of forming external corners as described in Section 2 Part 1.

b) By forming a square tower in the corner and then connecting bays to that tower.

3 The latter method has the advantage of facilitating the use of Platform Brackets (see Section 6). However, it should be noted that the platform will have a slight slope in one of the bays connected to the tower.

4 To erect the tower follow the procedures in Section 2 Part 1, but use Transoms of the appropriate length in place of Ledgers.

5 Continue erecting the scaffold in two directions from the corner, in accordance with Section 2 Part 1. NB: the Standards must be orientated so that the Transoms fit into a lower 'V' pressing of the bottom cluster. (For old type Standards with wedge fittings at the heads, the outer Standards must have the wedges facing the outside so that they do not obstruct the toeboard.)
Part 4 - Dismantling procedure

1. Check the scaffold is still in the correctly erected condition e.g. components or ties have not been removed or incorrectly fixed and that guardrails are still in their original position. If the scaffold is compromised in any way—seek advice.

2. Ensure the platform is clear of all loose material prior to commencement of dismantling.

3. Ensure that there is a minimum of one fully boarded tower (i.e. boarded and guard railed every lift) within the scaffold structure to allow access for removal of materials and components within a safe working platform.

4. All dismantling operations must be undertaken with a minimum of two competent persons.

5. Remove Diagonal Braces and any Ledgers and Transoms connected to Standards above the level of the top platform. These should then be transferred to a safe working platform and lowered to the ground. Refer to Lowering Technique in item 13 below.

6. Remove toeboard brackets and toeboards from the top platform and transfer to a safe working platform and lower to the ground.

Note: Removal of guardrails should be in accordance with the approved methods chosen for advanced guardrails, refer to Part 1. Erections.

7. Before removal of any Guardrail or Kwikguard, a suitable temporary or advanced guardrail system must be put in place in accordance with the requirements of NASC guidance document SG4. If necessary, with the chosen system, the scaffoldor should clip on his harness in accordance with Section 9. The Guardrail or Kwikguard should be removed one at a time and transferred to a safe working platform for lowering to the ground.

8. Remove Standards connected above platform level, having first checked that all components previously fixed to them have been removed. The Standards should be transferred to a safe working platform for lowering to the ground.

9. From the adjacent safe working platform the scaffoldor unclips the harness lanyard and repeats items 5 to 8 until all bays are dismantled working towards the fully boarded tower.

10. Working from the fully boarded platform below the top platform remove the Steelstage/Scaffold boards from above and board out the platform below (if it is not a fully boarded scaffold). The safe working platform must be a minimum of three boards wide.

11. Repeat items 5 to 8 for the new top platform level. Remove the lower end of the Diagonal Brace first and transfer it and all other components to a safe working platform for lowering to the ground.

12. Progressively dismantle the scaffold in the sequence described above, only removing ties when they would prevent further dismantling.

13. Components should be lowered to the ground by passing from hand to hand down the fully boarded section of scaffold or by means of an appropriate safe lowering method, such as by hand line, crane, hoist etc.

14. If any element of this dismantling procedure cannot be fully complied with, seek advice.
section 3

safe use and maintenance

1. Before allowing people or materials on the scaffold structure, ensure that it has been erected correctly and complies with the user’s requirements.

2. Ensure that all people using the scaffold are aware of the purpose for which it is intended to be used and the maximum loading to which it can be subjected.

3. Ensure users understand that any unauthorised modification to the scaffold or removal of components could cause a safety hazard. Alterations or extensions should be carried out only by a competent person.

4. Carry out regular inspections to check that components have not been removed or damaged, and that components have not been removed and replaced incorrectly.

5. Provide barriers and warning notices to prevent access to incomplete sections of scaffolding.

6. Ensure that safe access and egress routes are provided to all working platforms, and that such routes, including ladders and stairways, are kept clear.

7. Do not overload platforms - use properly designed loading towers and ensure that crane and forklift drivers understand loading restrictions on each part of the scaffold structure.

8. Because of the increased use of mechanical lifting plant on site there is an increased possibility for scaffolding components to become fouled/caught. When using cranes or other mechanical lifting devices near any scaffold structure care should be taken to ensure that nothing catches under any part of the scaffold. Otherwise uplift could occur with potentially dangerous consequences.

Particular care is required if any part of the item being lifted is out of driver’s sight. Connecting pins are available to positively fix Kwikstage Standards together if the scaffold user’s method statement/risk assessment indicates that uplift cannot be eliminated.
section 4

loading data and tie patterns

Loading Data
The information given in this Section is for permissible loading on basic Kwikstage Access Scaffolds constructed strictly in accordance with this scaffolding guide.

All loading data is for 1.2m wide scaffolds and 0.8m wide scaffolds not exceeding 10m in height.

Where variations from the basic structure are required, they must be referred to a person competent in the design of Kwikstage.

Some examples of the more commonly encountered variations are:

- Non-compliance with the tie patterns specified in this Section
- Scaffolds higher than the maximum specified
- Pavement gantries
- Bridging over openings in the scaffold
- A requirement for lift heights in excess of the 2m maximum
- Exposure to severe wind loading

The scaffold has been designed to resist combined service and wind loading as specified in BS 1139:Part 5:1990 “Specification for materials, dimensions, design loads and safety requirements for service and working scaffolds made of prefabricated elements”.

The following pages give details of the allowable numbers of boarded lifts, cantilever platforms and working levels for various configurations of Kwikstage access platforms.

Tie Patterns
All Kwikstage Access scaffolds must be tied to a permanent structure of sufficient strength to stabilise the scaffold. For advice on deviations from the following tie patterns consult your local branch of RMD Kwikform of Interserve Industrial.

For details of maximum heights of scaffold refer to the individual loading stated on each of the following pages.
tying pattern for kwikstage scaffolds - detail no. KS3000

Basic scaffold 1.2m wide, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type: Fully/Partially Boarded Kwikstage

General Details: Explanatory Notes

These general notes refer to Kwikstage scaffolds which are either fully or partially boarded. For unboarded scaffold with a maximum of two working platforms refer to Detail No. KS 3010.

Tie patterns

All tie patterns for fully or partially boarded Kwikstage, with the respective service loads are shown on Detail Nos. KS 3001 to KS 3008. Maximum Safe Working Load for ties to be 6.3kN each. Tie patterns are based on the assumption that ties are within 300mm of the nodes indicated.

Scaffold to be tied at top lift (Note 3)

Completed scaffolds must always be tied at the top lift.

Platforms cantilevered above last tie location

Where progressive scaffolds are required to be used with the required service load on any lift above the topmost tie position, ledger bracing is required as shown detailed overleaf. Both Standards require to be pinned with Code No. KAX10011 or Code No. 9534 on each lift that is braced. Coupler Brace Code No. KAX10013 or Code No. 9402 may be used as ledger bracing.

Attachment of Debris Netting (Note 5)

Debris Netting may be described as any open grid net sheet. Debris Netting may be extended beyond the top platform level of the completed scaffold and be tied to the top handrails or standards. However under extreme wind conditions the structural integrity of the scaffold may be affected. Following any high winds, a full inspection of the scaffold as required by current legislation, must be carried out prior to the scaffold being placed back into use. Any defects found by such an inspection MUST immediately be corrected before the scaffold is deemed fit for purpose.
Attachment of Sheeting (Note 5) Sheeting is described as close woven material similar to Monarflex, tarpaulin materials or polythene sheeting. Sheeting must not extend beyond the platform level of the completed scaffold, i.e. must not be tied to handrails or Standards above the top platform.

Transoms & Ledgers in lowest ‘V’ pressing (Note 2) Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of the lowest platform position.

Cantilever Platform Brackets (Note 4) Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access. The allowable load on such cantilever platforms is 0.75kN/m².

Platform Levels Tie Location Indicators

12
11
10
9
2
1
Base

See Note 5
See Note 3

See Note 2
tying pattern for kwikstage scaffolds - detail no. KS3001

Basic scaffold 1.2m wide, unsheeted, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type:

Fully Boarded Kwikstage

Duty:

Masonry or Special Duty

Use of Platform:

Masonry work, concrete blockwork and heavy cladding

Load Classification in accordance with BS EN12811-1:2003

Class 4

Maximum platform service load

- one level: 3.00kN/m²

Maximum additional working platform

- one level: 1.50kN/m²

Maximum height of scaffold:

12 lifts of 2.0m maximum lift height

Maximum number of boarded lifts:

12

Maximum number of cantilever platforms

(at platform level): 12

Maximum number of working cantilever platforms:

2 (See Note 4)
Note 1 Façade bracing omitted for clarity.
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.
Note 3 Completed scaffolds must always be tied at the top lift.
Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3002

Basic scaffold 1.2m wide, unsheeted, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type: Fully Boarded Kwikstage

Duty: Masonry or Special Duty

Use of Platform:

Load Classification in accordance with BS EN12811-1:2003

Maximum platform service load
- one level: 3.00kN/m²

Maximum additional working platform
- one level: 1.50kN/m²

Maximum height of scaffold: 10 lifts of 2.0m maximum lift height

Maximum number of boarded lifts: 10

Maximum number of cantilever platforms (at platform level): 10

Maximum number of working cantilever platforms: 2 (See Note 4)
Note: Alternative tying pattern for Masonry Scaffold with a restricted height of ten lifts and ties starting at level 2.

<table>
<thead>
<tr>
<th>Platform Levels</th>
<th>Tie Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td></td>
</tr>
</tbody>
</table>

Note 1 Façade bracing omitted for clarity.

Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3003

Basic scaffold 1.2m wide, unsheeted, with cantilever platforms formed from 1 or 2 Board Platform Brackets

<table>
<thead>
<tr>
<th>Scaffold Type:</th>
<th>Partially Boarded Kwikstage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty:</td>
<td>Heavy Duty</td>
</tr>
<tr>
<td>Use of Platform:</td>
<td>Blockwork, brickwork and heavy cladding</td>
</tr>
<tr>
<td>Load Classification in accordance with BS EN12811-1:2003</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Maximum platform service load</td>
<td>2.50kN/m²</td>
</tr>
<tr>
<td>- one level:</td>
<td>1.25kN/m²</td>
</tr>
<tr>
<td>Maximum additional working platform</td>
<td></td>
</tr>
<tr>
<td>- one level:</td>
<td></td>
</tr>
<tr>
<td>Maximum height of scaffold:</td>
<td>12 lifts of 2.0m maximum lift height</td>
</tr>
<tr>
<td>Maximum number of boarded lifts:</td>
<td>9</td>
</tr>
<tr>
<td>Maximum number of cantilever platforms (at platform level):</td>
<td>9</td>
</tr>
<tr>
<td>Maximum number of working cantilever platforms:</td>
<td>2 (See Note 4)</td>
</tr>
</tbody>
</table>
Note 1 Façade bracing omitted for clarity.

Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3004

Basic scaffold 1.2m wide, unsheeted, with cantilever platforms formed from 1 or 2 Board Platform Brackets

<table>
<thead>
<tr>
<th>Scaffold Type:</th>
<th>Fully Boarded Kwikstage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty:</td>
<td>Heavy Duty</td>
</tr>
<tr>
<td>Use of Platform:</td>
<td>Blockwork, brickwork and heavy cladding</td>
</tr>
<tr>
<td>Load Classification in accordance with BS EN12811-1:2003</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Maximum platform service load - one level:</td>
<td>2.50kN/m²</td>
</tr>
<tr>
<td>Maximum additional working platform - one level:</td>
<td>1.25kN/m²</td>
</tr>
<tr>
<td>Maximum height of scaffold:</td>
<td>8 lifts of 2.0m maximum lift height</td>
</tr>
<tr>
<td>Maximum number of boarded lifts:</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of cantilever platforms (at platform level):</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of working cantilever platforms:</td>
<td>2 (See Note 4)</td>
</tr>
</tbody>
</table>
Note: Alternative three lift tying pattern for Heavy Duty scaffold with a restricted height of eight lifts.

Note 1 Façade bracing omitted for clarity.
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.
Note 3 Completed scaffolds must always be tied at the top lift.
Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.
 The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3005

Basic scaffold 1.2m wide, unsheeted, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type: Partially Boarded Kwikstage

Duty: General Purpose

Use of Platform: General building work including brickwork, window & mullion fixing, rendering, plastering

Load Classification in accordance with BS EN12811-1:2003

Maximum platform service load 2.00kN/m²

Maximum additional working platform 1.00kN/m²

Maximum height of scaffold: 11 lifts of 2.0m maximum lift height

Maximum number of boarded lifts: 9

Maximum number of cantilever platforms (at platform level): 9

Maximum number of working cantilever platforms: 2 (See Note 4)
Note 1 Façade bracing omitted for clarity.
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.
Note 3 Completed scaffolds must always be tied at the top lift.
Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3006

Basic scaffold 1.2m wide, unsheeted, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type:

Partially Boarded Kwikstage

Duty:

Light Duty

Use of Platform:

- Plastering, painting, stone cleaning, glazing and pointing

Load Classification in accordance with BS EN12811-1:2003

Maximum platform service load

- one level: 1.50kN/m²

Maximum additional working platform

- one level: 0.75kN/m²

Maximum height of scaffold:

- 11 lifts of 2.0m maximum lift height

Maximum number of boarded lifts:

- 11

Maximum number of cantilever platforms (at platform level):

- 11

Maximum number of working cantilever platforms:

- 2 (See Note 4)

Note 1 Façade bracing omitted for clarity.
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3007

Basic scaffold 1.2m wide, sheeted, with debris netting, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type: Fully Boarded Kwikstage

Duty: Debris Netting

Use of Platform:

Load Classification in accordance with BS EN12811-1:2003

Maximum platform service load
- one level:

Maximum additional working platform
- one level:

Maximum height of scaffold:

Maximum number of boarded lifts:

Maximum number of cantilever platforms (at platform level):

Maximum number of working cantilever platforms:

Note 1 Façade bracing omitted for clarity.

All types including masonry work, heavy duty, general purpose and light access.

Up to Class 4

3.00kN/m²

1.50kN/m²

12 lifts of 2.0m maximum lift height

12

12

2 (See Note 4)
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².

Note 5 Debris Netting may be extended beyond the top platform level of the completed scaffold and be tied to the top handrails or standards. However, under extreme wind conditions the structural integrity of the scaffold may be affected. Following any high winds, a full inspection of the scaffold as required by current legislation, must be carried out prior to scaffold being placed back into use. Any defects found by such an inspection MUST immediately be corrected before the scaffold is deemed fit for purpose.
tying pattern for kwikstage scaffolds - detail no. KS3008

Basic scaffold 1.2m wide, sheeted, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type:

Fully Boarded Kwikstage

Duty:

Sheeted Scaffold

Use of Platform:

Load Classification in accordance with BS EN12811-1:2003

- Maximum platform service load
 - one level:
 - Maximum additional working platform
 - one level:

Maximum height of scaffold:

Maximum number of boarded lifts:

Maximum number of cantilever platforms (at platform level):

Maximum number of working cantilever platforms:

- Upto Class 4
- 3.00kN/m²
- 1.50kN/m²
- 12 lifts of 2.0m maximum lift height
- 12
- 12
- 2 (See Note 4)
Note 1 Façade bracing omitted for clarity.

Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².

Note 5 Sheeting must not extend beyond the platform level of the completed scaffold, i.e. must not be tied to handrails or Standards above the top platform.
tying pattern for kwikstage scaffolds - detail no. KS3010

Basic unboarded scaffold 1.2m wide, with two cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type: Unboarded Kwikstage

General Details: Explanatory Notes

These general notes refer to Kwikstage scaffolds with a maximum number of two boarded lifts.
For fully boarded scaffold refer to Detail No. KS 3000.

Tie patterns
All tie patterns for unboarded Kwikstage, with the respective service loads are shown on Detail Nos. KS 3011 to KS 3016. Maximum Safe Working Load for ties to be 6.3kN each. Tie patterns are based on the assumption that ties are within 300mm of the nodes indicated.

Maximum number of boarded lifts
In all cases the maximum number of lifts to be boarded is two with two cantilever platforms. No additional Steelstage or boarding out of the scaffold may take place.

Scaffold to be tied at top lift (Note 3)
Completed scaffolds must always be tied at the top lift.

Platforms cantilevered above last tie location
Where progressive scaffolds are required to be used with the required service load on any lift above the topmost tie position, ledger bracing is required as shown detailed below. Both Standards require to be pinned with Code No. KAX10011 or Code No. 9534 on each lift that is braced. Coupler Brace item No. KAX10013 or item No. 9402 may be used as ledger bracing.

First Issue 2010
Attachment of Debris Netting (Note 5) Debris netting is described as any open grid net sheet. Debris Netting may be extended beyond the top platform level of the completed scaffold and be tied to the top handrails or standards. However, under extreme wind conditions the structural integrity of the scaffold may be affected. Following any high winds, a full inspection of the scaffold as required by current legislation, must be carried out prior to scaffold being placed back into use. Any defects found by such an inspection MUST immediately be corrected before the scaffold is deemed fit for purpose.

Sheeting For the tying pattern for all sheeted scaffolds refer to KS 3008.

Transoms & Ledgers in lowest ‘V’ pressing (Note 2) Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of the lowest platform position.

Cantilever Platform Brackets (Note 4) Two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access. The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3011

Basic unboarded and unsheeted scaffold 1.2m wide, with cantilever platforms formed from 1 or 2 Board Platform Brackets

<table>
<thead>
<tr>
<th>Scaffold Type:</th>
<th>Unboarded Kwikstage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty:</td>
<td>Masonry or Special Duty</td>
</tr>
<tr>
<td>Use of Platform:</td>
<td>Masonry work, concrete blockwork and heavy cladding</td>
</tr>
<tr>
<td>Load Classification in accordance with BS EN12811-1:2003</td>
<td>Class 4</td>
</tr>
<tr>
<td>Maximum platform service load</td>
<td>3.00kN/m²</td>
</tr>
<tr>
<td>- one level:</td>
<td></td>
</tr>
<tr>
<td>Maximum additional working platform</td>
<td>1.50kN/m²</td>
</tr>
<tr>
<td>- one level:</td>
<td></td>
</tr>
<tr>
<td>Maximum height of scaffold:</td>
<td>30 lifts of 2.0m maximum lift height</td>
</tr>
<tr>
<td>Maximum number of boarded lifts:</td>
<td>2</td>
</tr>
<tr>
<td>Maximum number of cantilever platforms (at platform level):</td>
<td>2</td>
</tr>
<tr>
<td>Maximum number of working cantilever platforms:</td>
<td>2 (See Note 4)</td>
</tr>
</tbody>
</table>
Note 1 Façade bracing omitted for clarity.
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.
Note 3 Completed scaffolds must always be tied at the top lift.
Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.
The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3012

Basic unboarded and unsheeted scaffold 1.2m wide, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type:

Duty:

Use of Platform:

Load Classification in accordance with BS EN12811-1:2003

Max height of scaffold:

Platform service load
- one level:

Max additional working platform
- one level:

Max number of boarded lifts:

Max number of cantilever platforms (at platform level):

Max number of working cantilever platforms:

Unboarded Kwikstage

Masonry or Special Duty

Masonry work, concrete blockwork and heavy cladding

Class 4

3.00kN/m²

1.50kN/m²

26 lifts of 2.0m maximum lift height

2

2

2 (See Note 4)
Note: Alternative tying pattern for Masonry Scaffold with a restricted height of 26 lifts and ties starting at Level 2.

Platform Levels

<table>
<thead>
<tr>
<th>26</th>
<th>25</th>
<th>24</th>
</tr>
</thead>
</table>

Tie Locations

See Note 3

Ties every second lift between lifts 4 and 24

Base

Note 1 Façade bracing omitted for clarity.

Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3013

Basic unboarded and unsheeted scaffold 1.2m wide, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type:
Unboarded Kwikstage

Duty:
Masonry or Special Duty

Use of Platform:
Masonry work, concrete blockwork and heavy cladding

Load Classification in accordance with BS EN12811-1:2003

- **Maximum platform service load:** 3.00kN/m²
- **Maximum additional working platform:** 1.50kN/m²

Maximum height of scaffold: 10 lifts of 2.0m maximum lift height

Maximum number of boarded lifts: 2

Maximum number of cantilever platforms (at platform level): 2

Maximum number of working cantilever platforms: 2 (See Note 4)
Note: Alternative three lift tying pattern for Masonry Scaffold with a restricted height of ten lifts and ties starting at Level 1.

Note 1 Façade bracing omitted for clarity.
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.
Note 3 Completed scaffolds must always be tied at the top lift.
Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3014

Basic unboarded and unsheeted scaffold 1.2m wide, with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type: Unboarded Kwikstage

Duty: General Purpose

Use of Platform: General building work including brickwork, window & mullion fixing, rendering and plastering

Load Classification in accordance with BS EN12811-1:2003

- Maximum platform service load: 2.00kN/m²
- Maximum additional working platform: 1.00kN/m²
- Maximum height of scaffold: 20 lifts of 2.0m maximum lift height
- Maximum number of boarded lifts: 2
- Maximum number of cantilever platforms (at platform level): 2
- Maximum number of working cantilever platforms: 2 (See Note 4)
Note 1 Façade bracing omitted for clarity.

Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3015

Basic unboarded and unsheeted scaffold 1.2m wide, with cantilever platforms formed from 1 or 2 Board Platform Brackets

<table>
<thead>
<tr>
<th>Scaffold Type:</th>
<th>Unboarded Kwikstage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty:</td>
<td>Light Duty</td>
</tr>
<tr>
<td>Use of Platform:</td>
<td>Plastering, painting, stone cleaning, glazing and pointing</td>
</tr>
<tr>
<td>Load Classification in accordance with BS EN12811-1:2003</td>
<td>Class 2</td>
</tr>
<tr>
<td>Maximum platform service load - one level:</td>
<td>1.50kN/m²</td>
</tr>
<tr>
<td>Maximum additional working platform - one level:</td>
<td>0.75kN/m²</td>
</tr>
<tr>
<td>Maximum height of scaffold:</td>
<td>20 lifts of 2.0m maximum lift height</td>
</tr>
<tr>
<td>Maximum number of boarded lifts:</td>
<td>2</td>
</tr>
<tr>
<td>Maximum number of cantilever platforms (at platform level):</td>
<td>2</td>
</tr>
<tr>
<td>Maximum number of working cantilever platforms:</td>
<td>2 (See Note 4)</td>
</tr>
</tbody>
</table>
Note 1 Façade bracing omitted for clarity.
Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.
Note 3 Completed scaffolds must always be tied at the top lift.
Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.
 The allowable load on such cantilever platforms is 0.75kN/m².
tying pattern for kwikstage scaffolds - detail no. KS3016

Basic unboarded scaffold 1.2m wide, sheeted with Debris Netting with cantilever platforms formed from 1 or 2 Board Platform Brackets

Scaffold Type: Unboarded Kwikstage
Duty: Debris Netting

Use of Platform:

Load Classification in accordance with BS EN12811-1:2003

Maximum platform service load
- one level:
Maximum additional working platform
- one level:
Maximum height of scaffold:
Maximum number of boarded lifts:
Maximum number of cantilever platforms
(at platform level):
Maximum number of working cantilever platforms:

3.00kN/m²
1.50kN/m²
30 lifts of 2.0m maximum lift height
2
2
2 (See Note 4)
Note 1 Façade bracing omitted for clarity.

Note 2 Transoms and Ledgers must be placed in lowest possible ‘V’ pressing irrespective of lowest platform position.

Note 3 Completed scaffolds must always be tied at the top lift.

Note 4 Up to two levels of cantilever platforms may be moved to intermediate levels to provide appropriate access.

The allowable load on such cantilever platforms is 0.75kN/m².

Note 5 Debris Netting may be extended beyond the top platform level of the completed scaffold and be tied to the top handrails or standards. However, under extreme wind conditions the structural integrity of the scaffold may be affected. Following any high winds, a full inspection of the scaffold as required by current legislation, must be carried out prior to scaffold being placed back into use. Any defects found by such an inspection MUST immediately be corrected before the scaffold is deemed fit for purpose.
tie patterns for 0.8m wide scaffold

Drawing detail A - Tie pattern
All Kwikstage Access scaffolds must be tied to a permanent structure of sufficient strength to stabilise the scaffold.

For Kwikstage scaffolds with a platform width of no greater than 0.8m (i.e 3 boards) the stability of the scaffold during erection is important. The scaffold shall be tied in accordance with Tie Patterns stated in this User Guide. The scaffold can alternatively be tied in accordance with A (opposite) and the maximum height of such scaffolds should be not greater than stated in KS300 to KS3006 and KS3010 to KS3014. For debris netted scaffolds the tie pattern should be as shown in KS3007 and for sheeted scaffolds the tie pattern should be as KS3008

Notes:
1) Minimum Safe Working Load of ties to be 6.1kN each.

2) The tie patterns shown are based on the assumption that the ties are within 300mm of the nodes indicated.

2) 3 Board Platform Brackets must not be used on 0.8m wide scaffolds.
section 5
bracing requirements

Bracing requirements
Façade bracing should generally be provided in the form of a continuous long diagonal running from the bottom to the top of the scaffold as illustrated below.

For long façades, bracing should return to the bottom of the scaffold as shown, with the maximum number of unbraced bays not exceeding four.

If the proportions (length:height) of the scaffold are such that a single run of diagonal bracing does not reach the top of the scaffold, then further sequences of bracing must be provided, as shown opposite until the top of the scaffold is reached.

Note:
The bottom end of each brace must be connected to the ‘V’ pressing BELOW the top end of the previous brace.

Scaffolds for housing
For Kwikstage scaffolds used in house building type works, where the maximum number of lifts is less than four the following bracing pattern may be used. Bracing should be repeated every four bays.
Platform Brackets are available in three widths to form cantilever extensions to platforms on the inside of a Kwikstage scaffold. They connect into ‘V’ pressings on the Standards in the same manner as the Transoms.

1, 2 or 3 Board Platform Brackets may be used on 1.2m (five board) wide Kwikstage scaffolds. Only 1 or 2 Board Platform Brackets are permitted on 0.8m (3 board) wide scaffolds.

These components can only be used in locations where there is not a risk of people falling (e.g. when the edge of the cantilevered platform is close to the face of a building).

Steelstage should be used as the decking on Platform Brackets.

Platform Brackets should be fitted in the following manner:

1. Connect a Platform Bracket of the required width to a ‘V’ pressing, at the appropriate level, on the side of a Standard facing the building.

2. Repeat the operation on an adjacent Standard.

3. If a 1 Board Platform Bracket is being used, place a Steelstage of the appropriate length on the Brackets and tap home the wedges.

4. The cantilever platform for one bay is now complete and it can be continued along the scaffold for the required number of bays in the same manner.

5. If 2 or 3 Board Platform Brackets are being used, a Tie Bar of the appropriate length must be fitted before any Steelstage are placed on the Brackets.

6. The curved lugs on the ends of the Tie Bar engage in holes in the Platform Brackets with the horizontal leg of the angle section pointing outwards (i.e. away from the scaffold).

NB A safe system of work is required during installation or removal of Tie Bars.

7. Once the Tie Bar has been fixed, Steelstage can be placed in that bay to form a completely decked bay of cantilevered platform, and the wedges driven home. (Two or three Steelstage will be required depending on the Platform Bracket being used.)

Note: The Tie Bar is now locked in position and cannot be removed without first removing one of the Steelstage.

8. Continue erecting cantilevered platforms in the above manner for as many bays as are required, with particular emphasis on the need to fix Tie Bars in the sequence and method specified.

9. An Internal Corner Filler (Code No. 9053 or Code No. KAX10017) is available should cantilever platforms be required on internal corners.
section 7
ladder and stair access

Part 1 - Ladder towers

1 Where ladder access towers are required careful consideration should be given to their location in the scaffold. The following is recommended:

 a) Whenever possible a separate ladder tower should be constructed leaving the working platform on the scaffold intact.

 b) When (a) is not possible the ladder tower should be positioned on the end of a run of scaffold, keeping the disruption of the working platform to a minimum.

 c) Only when (a) and (b) are not practicable should consideration be given to positioning the ladder access tower in the general run of the scaffold.

2 Construction of the ladder tower framework should be in accordance with the procedure set out in Section 2 of this User Guide taking cognisance of the chosen method of advanced guardrail requirements.

3 The erection sequence that follows is based on the ladder tower being erected in a 2.4m x 1.2m bay built in 2m lifts and using a 3m ladder to give access to each lift.

 a) Erect the basic framework of the ladder tower and fully deck out at the lowest transom level.

 b) Fit a Ladder Access Transom centrally across the Ledgers 2m above the boarded lift, with the half coupler attached to the outside Ledger of the ladder tower. Leave the half coupler loose enough to adjust the position of the Transom.

 c) Place a 1.2m Steelstage between the outside Transom and the Ladder Access Transom and ensure it is fully located by pushing the Ladder Access Transom up against it. Check it is square and tighten the half coupler.

 d) Working from below, fit the second 1.2m and three 2.4m Steelstage into the bay.
e) Using a 3m ladder as access, tie it to the Ladder Access Transom and complete the 2m lift by erecting double guardrails, toeboards and end toeboards as applicable to all exposed faces of the ladder tower.

Note: Kwikguards could be used as an alternative to guardrails and toeboards.

4 Where the ladder access is erected within the main run of scaffold (refer to 1c), fit a guardrail at main guardrail height only, on the approaches to the ladder access.

Note: This guardrail should be fitted with a notice warning that there is an opening in the platform.

5 Repeat the erection sequence 3 (and 4) above as required by the progress of the main scaffold.

6 To dismantle the Ladder Tower reverse the above sequence having first checked that the scaffold is still in the correctly erected condition.

Part 2 - Stair towers

1 Where stair towers are required, careful consideration should be given to the layout of the main access scaffold. The Stairs can only be fitted into a 2.4m bay and the landing platforms either side must match the bay sizes of the main scaffold run to which the stair tower is attached.

2 The minimum length of the stair tower is a 2.4m bay with 1.2m landing platforms at each end.

3 Construction of the stair tower framework should be in accordance with the procedure set out in Section 2 of the this User Guide.

4 Erection Sequence
The Stairway Unit is erected in a 2.4m x 0.8m bay built in 2m lifts, with landing bays to match the main scaffold either side.
7 ladder and stair access

4.1 The erection sequence is based on the stair tower being built with access to the working lifts that is independent of the main access scaffold.

a) Erect the basic framework of the stair tower i.e. three bays long x two 0.8m bays wide x 2m lift. At the lowest transom level fully deck out the landing bays.

b) Fit a Stairway Unit into the central 2.4m bay. This should be located in the inside bay next to the main scaffold. (A two person operation.)

Fix the Stairway Unit to the 0.8m Transoms, top and bottom, using two Beam Clips. Fit two Handrail Units to the Stairway Units. (A two person operation.)

c) From below, fully deck out the landing bays 2m above and proceed to the next lift. Fit double guardrails around the sides of the landing bays, and across the central 2.4m bay next to the main scaffold.

d) Fit a Stairway Unit in the outside bay in the opposite direction to the one below. Repeat the above sequence, adding to the height of the stairway and providing access onto the working platforms as necessary.

Note: Toeboards are not necessary on the landing platforms if there are no materials that could be dislodged.

5 To dismantle the stair tower, reverse the above sequence having first checked that the scaffold is still in the correctly erected condition.

Note: Alternatively an independent Stair Tower can be erected, This should be tied to the adjoining scaffold on every Standard at alternative lifts.
section 8

loading tower

1. Determine required location of the tower.
 Using the procedures in Section 2, erect an intermediate Standard and Universal Jack using four 1.2m Infill Transoms and two Loading Tower Intermediate Standard Restraints. Do not drive home the Transom wedges at this stage.

2. Erect front Standards of tower using Universal Jacks and 2.4m Ledgers in the bottom ‘V’ pressings. Level tower by adjusting the front leg Universal Jacks.
 Note: Adjustable Base and Head Jack (Code No. KAX20003 or Code No. 9600) must not be used in a loading tower.

3. Place 2.4m Loading Tower Transom and side face Ledgers at required platform level.

4. Place hook of Infill Tie around intermediate Standard and move forward until end bracket passes over Loading Tower Transom ‘T’ section.
 Drive home all wedges.

5. Place ten Steelstage onto tower to create working platform.

6. Taking cognisance of the chosen method of advanced guardrail requirements, fix Kwikguards to sides of working platform. Ensure the side of the Kwikguard with the toeboard return faces outwards. (A two person operation.)

7. Place Guardrail/Gate Restraint on top of vertical angles of Kwikguards. Adjust position of half couplers on top rails of Kwikguards until they pass through mesh. Tighten couplers. (A two person operation.)
 Note: An alternative Loading Tower gate is available, refer to Section 1; Components
With Guardrail/Gate Restraint in lowered position, place a pair of Loading Tower Gates onto the front Standards of the tower by fitting the hinge pins into the front 'V' pressings on the Standards. Close Gates and ensure that the locking mechanism locates over the Guardrail/Gate Restraint.

Attach tube and coupler plan diagonal braces from outside legs of tower to main scaffold at platform level. Fix 3.54m Diagonal Braces to each side of the tower, using the lowest available ‘V’ pressing.

Repeat procedure for all other tower working platforms. Connecting pins should be inserted in all joints between Standards supporting the 2.4m Loading Tower Transom.

To dismantle the loading tower, reverse the above sequence having first checked that the scaffold is still in the correctly erected condition. Special attention should be given to the Loading Tower Intermediate Standard Restraints to ensure they remain in place at all times. This should especially be checked prior to dismantling.

To open gates, undo locking mechanism. With Guardrail/Gate Restraint still in position, swing gates open until they are at 180° to the closed position. Insert locking pins into the ‘V’ pressings forming the upper hinges. The Guardrail/Gate Restraint can then be swung over until it rests at the rear of the loading platform. To close gates, reposition Guardrail/Gate Restraint, remove locking pins, swing gates to the closed position, and refix lock.

Notes:
(i) Maximum load per platform is 20kN. This load is typically one pallet of bricks with one tub of mortar alongside. Maximum combined load per tower is 60kN.
(ii) No persons must be on the loading tower platform whilst the Guardrail/Gate Restraint is positioned at the rear of the platform.
(iii) A Loading Tower Intermediate Standard Restraint must be fitted and left in position at every level of the main scaffold.
(iv) Tube and coupler diagonal plan braces must be fitted at every loading tower working platform level and at no greater than alternate lifts in all other circumstances.
(v) If a platform is not required at any level, the Infill Tie may be removed and the Loading Tower Transom replaced with a 2.4m Ledger.
section 9

kwikstage safe anchorage points

Anchorage points shown are to support full arrest equipment which includes but is not limited to Safety Harness, Lanyard and 55mm opening scaffold hook.

- Working Level
- Recommended locations for attachment of Safety Harness
- Not suitable for attachment of Safety Harness

First Issue 2010
appendix A

identification and use of alternative components

Information in this Appendix is for components which have been modified or superseded but which can still be used for the applications specified.

Adjustable Base and Head Jack

<table>
<thead>
<tr>
<th>Code No.</th>
<th>KAX20003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code No.</td>
<td>9600</td>
</tr>
<tr>
<td>Weight</td>
<td>4.4kg</td>
</tr>
<tr>
<td>Maximum adjustment</td>
<td>515mm</td>
</tr>
</tbody>
</table>

This component serves the same purpose as the Universal Jack except that the applied axial load must not exceed 25kN. Coarse adjustment is by means of a captive pin and holes in the Jack stem. Fine adjustment is by means of the collar on the threaded section of the stem.

Heavy Duty Adjustable Base Jack

<table>
<thead>
<tr>
<th>Code No.</th>
<th>KAX20002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code No.</td>
<td>9062</td>
</tr>
<tr>
<td>Weight</td>
<td>11.0kg</td>
</tr>
<tr>
<td>Maximum adjustment</td>
<td>595mm</td>
</tr>
</tbody>
</table>

This component serves the same purpose as the Universal Jack which has replaced it. It is however heavier and slower to adjust.

Steelstage Locking Plate

<table>
<thead>
<tr>
<th>Code No.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code No.</td>
<td>952000</td>
</tr>
<tr>
<td>Weight</td>
<td>11.0kg</td>
</tr>
</tbody>
</table>

Loading Tower Gates

These galvanised gates have pins to hold the gates in the ‘open’ position. A gravity latch mechanism connects to the Guardrail/Gate Restraints to secure the gates in the ‘closed’ position.

<table>
<thead>
<tr>
<th>Code No. (pair)</th>
<th>KAX10014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code No. (pair)</td>
<td>9006</td>
</tr>
<tr>
<td>Weight (pair)</td>
<td>38.0kg</td>
</tr>
</tbody>
</table>

Return Kwikguard

<table>
<thead>
<tr>
<th>Code No.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code No.</td>
<td>9070</td>
</tr>
<tr>
<td>Weight</td>
<td>11.0kg</td>
</tr>
</tbody>
</table>

Three Step Access Bracket

<table>
<thead>
<tr>
<th>Code No.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code No.</td>
<td>9088 & 9089</td>
</tr>
<tr>
<td>Weight</td>
<td>11.0kg</td>
</tr>
<tr>
<td>Maximum adjustment</td>
<td>595mm</td>
</tr>
</tbody>
</table>
eastern offices

United Kingdom
RMD Kwikform,
Brickyard Road, Aldridge,
Walsall WS8 8W, UK.
Tel: +44 1922 743743 Fax: +44 1922 743400
Email: info@rmdkwikform.com

Ireland
RMD Kwikform,
Ballyboggan Road, Finglas, Dublin 11, Ireland
Tel: +353 1 830 2500 Fax: +353 1 830 2522
Email: rmd.dublin@rmdkwikform.com

Portugal
RMD Kwikform,
Av 25 de Abril, 32-1º Esquerdo,
2870-150 Montijo, Portugal
Tel: +351 21 232 86 88 Fax: +351 21 231 57 15
Email: rmd.lisboa@rmdkwikform.com

Spain
RMD Kwikform Ibérica SA,
Paseo del Club Deportivo, 1
Urbanización La Finca, Edif. 3, 1 Izda.
28223 Pozuelo de Alarcón , Madrid
Tel: +34 91 5556 104 Fax: +34 91 5554 745
Email: rmd.madrid@rmdkwikform.com

middle east offices

UAE
RMD Kwikform Middle East LLC
P.O. Box 5801, Sharjah, UAE
Tel: +971 6 553 4173 Fax: +971 6 553 4327
Email: rmd.me@rmdkwikform.com

Abu Dhabi
RMD Kwikform,
PO Box 259, Abu Dhabi, UAE.
Tel: +971 2 550 2383 Fax: +971 2 550 2384
Email: rmd.abudhabi@rmdkwikform.com

Dubai
RMD Kwikform Middle East LLC
P.O. Box 115480, Dubai, UAE
Tel: +971 4 885 6144 Fax: +971 4 885 6141
Email: rmd.dubai@rmdkwikform.com

Bahrain
RMD Kwikform (Almoayed) Bahrain LLC
PO Box 21475, Flat 12, Building 829,
Road 833, Block 408, Sanabis,
Kingdom of Bahrain
Tel: +973 1738 2724 Fax: +973 1738 2624
Email: rmd.bahrain@rmdkwikform.com

Lebanon
RMD Kwikform,
Atco Sari, Hazmieh, Lebanon.
Hobeika Centre, 3rd Floor.
Tel: +961 545 0214 Fax: +961 595 5387
Email: rmd.lebanon@rmdkwikform.com

Oman
RMD Kwikform Oman LLC
P.O. Box 889, Post Code 100
Muscat, Sultanate of Oman
Tel: +968 246 13571 Fax: +968 246 13573
Email: rmd.oman@rmdkwikform.com

Kuwait
RMD Kwikform,
PO Box 42094, Shuwaik 70651, Kuwait
Tel: +965 2484 5161 Fax: +965 2484 6414
Email: rmd.kuwait@rmdkwikform.com

Saudi Arabia
RMD Kwikform Saudi Arabia LLC
Al-Bandariyah Center Office No 611 (Unit 5)
Building No 3194 , Prince Faisal Bin Fahad Road
Al Khobar 34424 - 8555, Kingdom of Saudi Arabia
Tel: +966 3 882 5444 Fax: +966 3 882 6604
Email: rmd.ksa@rmdkwikform.com

Qatar
RMD Kwikform (Al Maha) Qatar LLC
P.O. Box 405, Doha, Qatar
Tel: +974 465 3034 Fax: +974 465 3282
Email: rmd.qatar@rmdkwikform.com

asian offices

Australia
RMD (Australia) Pty. Ltd.
PO Box 169, Merton Park, South Australia, 5039.
Tel: +61 8 8179 8200 Fax: +61 8 8179 8201
Email: rmd.australia@rmdformwork.com

Hong Kong
RMD Kwikform,
22nd Floor Easy Tower,
609 Tai Nan West Street, Cheung Sha Wan,
Kowloon, Hong Kong.
Tel: +852 2415 4882 Fax: +852 2413 4797
Email: rmd.hongkong@rmdkwikform.com

New Zealand
RMD (New Zealand) Ltd.
PO Box 22-316, 101-105 Station Road,
Otahuhu, Auckland 6, New Zealand.
Tel: +64 9 276 5955 Fax: +64 9 276 6732
Email: rmd.auckland@rmdkwikform.com

Philippines
RMD Kwikform,
Unit 1102, Annapolis Wilshire Plaza,
#11 Annapolis Street, Greenhills’,
San Juan, Metro Manila, Philippines.
Tel: +632 724 42 13 Fax: +632 724 42 14
Email: rmd.manila@rmdkwikform.com

south american office

Chile
RMD Kwikform,
La Estera 811, Parque Industrial Valle Grande, Lampa, Santiago de Chile
Tel: +56 2714 9800 Fax: +56 2714 9800
Email: rmd.chile@rmdkwikform.com

south american office

South Africa
RMD Kwikform South Africa (PTY) Ltd,
52 Jakaranda St, Hennopspark,
Centurion, Pretoria.
Tel: +27 12 681 0360 Fax: +27 12 681 0361
Email: rmd.sa@rmdkwikform.com

First Issue 2010
Interserve Industrial offices

Belvedere
Crabtree Manorway South, Belvedere, Kent DA17 6BH
Tel: +44 208 326 9560 Fax: +44 208 310 2016

Cardiff
Unit G9, The Business Centre, Cardiff House, Cardiff Road, Vale of Glamorgan, CF63 2AW
Tel: +44 1446 731 240 Fax: +44 1446 731 245

Derby
134 Bdg, c/o Celanese Acetate, PO Box 5
Spondon, Derby, DE21 7BP
Tel: +44 1332 663 001 Fax: +44 1332 281 414

Dundee
70/72 Perrie Street, Lochee
Dundee, DD2 2RD
Tel: +44 1382 610 511 Fax: +44 1382 623 923

Edinburgh
600 Gilmerton Road
Edinburgh, EH17 8RY
Tel: +44 131 672 2698 Fax: +44 131 672 2560

Ellesmere Port
Unit 2, Olympic Park, Poole Hall Road
Ellesmere Port, CH66 1ST
Tel: +44 151 373 7660 Fax: +44 151 356 4034

Glasgow
3S North Canal Bank Street
Glasgow, G4 9QX
Tel: +44 141 552 0003 Fax: +44 141 332 3614

Grangemouth
22 Castle Road, Bankside Industrial Estate, Falkirk, FK2 7XY
Tel: +44 1324 627 430 Fax: +44 1324 625 834

Leeds
Westland Square, Westland Road
Leeds, LS11 5SS
Tel: +44 113 271 3841 Fax: +44 113 270 0048

Newcastle
Chain Bridge Road, Blaydon-on-Tyne,
Tyne and Wear, NE21 5SZ
Tel: +44 1914 142 481 Fax: +44 1914 990 087

Preston
Rough-Hey Road, Grimsargh
Preston PR2 5AR
Tel: +44 1772 796 665 Fax: +44 1772 703 122

Teesside
6 Eggleston Court, Startforth Road
Riverside Park, Middlesbrough, TS2 1RL
Tel: +44 1642 258 500 Fax: +44 1642 258 501

West Bromwich
Intersection House,
110 Birmingham Road, West Bromwich,
West Midlands, B70 6RP
info.industrial@interserve.com
Tel: +44 121 500 5000 Fax: +44 121 524 8820

First Issue 2010
Our policy is one of continuous improvement and we reserve the right to change, alter or modify any detail, design, weight, dimension or code without prior notice being given.

www.rmdkwikform.com
www.interserve.com